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Issues of nonlinearities in data assimilation

* The Kalman Filter assumption that the ensemble forecast

perturbations are Gaussian is not valid if there is nonlinear

growth

*Nonlinearity depends on model dynamics, observations

(accuracy, operators, sampling frequency) and model error
*Being able to use the nonlinear operators (M and H),
EnKF handles some nonlinearity.

*Nonlinearity will increase the difficulty of the data
assimilation, particularly for EnKF.



LETKF v.s. 4D-Var
with the Lorenz 40-variable model (Fertig et al., 2007)
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EnKF does not handle well long windows because ensemble
perturbations become non-Gaussian. 4D-Var simply iterates
and produces a more accurate analysis.



Issues of nonlinearities in data assimilation

*Nonlinearity will increase the difficulty of the data
assimilation, particularly for EnKF.
* A disadvantage of ensemble-based KF is that ensemble

perturbations become non-Gaussian under strong nonlinearity,
and therefore needs short assimilation windows.

*4D-Var is a smoother: it keeps iterating until it fits the
observations within the assimilation window as well as possible.

*EnKF doesn’t have the important outer loop as in the
incremental 3D-Var and 4D-Var, widely used in operational
centers (ECMWEF, NCEP, GMAO...)



Outer-loop in the incremental 4D-Var

Adjustments for the background trajectory and sensitivity

Xo = Xp matrix related to the linearization of the observation operator
t,- ----------- > High-resolution non-linear trajectory T7991.91
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High-resolution non-linear forecast

Figure from ECMWF, Anderson, 2005



Dealing with nonlinearities within EnKF

e EnKF is a sequential data assimilation system where, after the
new data is used at the analysis time, it should be discarded.
Only if the previous analysis and the new background are the
most likely states given the past observations.

e For cases with strong nonlinear growth (e.g. the EnKF spin-up or
the sudden change of the background dynamics), background
ensemble can’t represent the state uncertainty and the most
likely state is unlikely to happen!!

—Filter divergence can take place.




Filter divergence:
when the trajectory is about to change regime

Trajectory of x
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Nonlinearity vs. Non-Gaussianity in EnKF

_Trajectory of x

*Nonlinearity will distort the ensemble
distribution and make it less Gaussian

*With non-Gaussian ensemble, the background
ensemble quickly degrades.

*Sampled error statistic lost track of the true
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Dealing with nonlinearities within EnKF

e EnKF is a sequential data assimilation system where, after the
new data is used at the analysis time, it should be discarded.
Only if the previous analysis and the new background are the
most likely states given the past observations.

e For cases with strong nonlinear growth (e.g. the EnKF spin-up or
the sudden change of the background dynamics), background
ensemble can’t represent the state uncertainty and the most
likely state is unlikely to happen!!

e During strong nonlinearity, we wish to increase the influence of
observations and should use the observations more than once
if we can extract more information.




Kalman Filter and RIP with linear dynamics

*RIP Is an algorithm that uses the same
observation multiple times

*Using RIP produces the same analysis means
as the optimal KF.

*The estimated error from KF-RIP with re-using
the observations N times is the same as the one
that would be computed from KF with higher
observation accuracy, i.e., with an observation
error variance divided by N.



KF vs. KF-RIP with a linear model

A linear model
for state and error variance

X, =X, +0
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Using RIP produces the same analysis means as the optimal KF.
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Estimated analysis variance

RIP as multi-step analysis correction
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* With N iteration, the estimated error
variance from KF-RIP is N times
smaller than the one from KF.

* The estimated variance from KF-RIP
Is the same as the one that would be
computed from KF with higher
observation accuracy, i.e., with an
observation error variance divided by
N, the number of the iterations.

*The small estimated error variance
from KF-RIP is used to achieve small
increment for multi-step analysis
correction



Increase the influence of observations
by reducing their error covariance R

“Hard way”:

— Reduce the observation error and assimilate this
observation once.

— Compute the analysis increment at once

M“soft way”: (RIP/QOL)

— Use the original observation error and assimilate
the same observation multiple times.

— The total analysis increment is achieved as the
sum of multiple smaller increments (advantageous
with nonlinear cases).



Standard LETKF framework
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No-cost smoother for 4D-LETKF
(Kalnay et al, 2007, Yang et al. 2008)
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*No-cost LETKF smoother (& ): apply at 7, the same weights found
optimal at¢ , works for 3D- or 4D-LETKF
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Iterative algorithm for re-using observations
(no-cost smoother + stopping criterion)

X (1,) =X (1,)+ X, (1,)W(1,)

X' (t,) =X, (1,)W(z,)

Analysis step at t

X' (t,.)=X""(r,_)+ X" (t,.)W(t,)

X' (1,.) =X"(t,_)W(z,) +E""

Smooth step at t_,

. p =/ <1
Forecast time fromt_  tot |x b () = Mtn_1 L [X (t,_)+X, (¢, )]
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The iteration continues only if we can extract extra information from the same
observations



Time

“Running in place” in the LETKF framework
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Time

“Quasi Outer-loop” in the LETKF framework
(simplified RIP)
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Dealing with nonlinearities with EnKF

We’ll focus on nonlinear dynamics, and propose two new
methods based on the LETKF framework for using long windows

RIP QOL
generalized simplified RIP
outer-loop

improvement mean and covariance mean
cost expensive less expensive
Reraber




Experimental setting

 Nonlinear model: Lorenz 3-variable model

» assimilation setup
— DA methods: LETKF, RIP, QOL and 4D-Var
— observation error variance= 2.0

— assimilation window
* Linear window (frequent observation): 8 timestep
* Nonlinear window (infrequent observation): 25 timestep



4D-Var LETKF
Linear window 031 030
(obs every 8 timesteps)
Nonlinear window 0.53
(obs every 25 timesteps) Assim 0.68
window=75

*Long window + Quasi-static variational analysis (Pires et al.,

1996) -> 4D-Var wins!

*The standard LETKF can’t handle the long assim. window.




Results with Lorenz 3-variable model

LETKF
4D-Var
standard +QOL +RIP
obs every 8 time-step 0.31 0.30 027 027
(linear window) ' | | .
obs every 25 time-step 0.53 0.68 0.47 0.35

(nonlinear window)  (assim window=75)

*With the QOL, LETKF analysis with nonlinear window is
much improved, even better than 4D-Var!

 RIP gives even more improvement than the QOL because
it improves both the mean and the covariance.




Trajectory of variable y
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with RIP/QOL filter divergence is avoided



fewer observations

X y Z Xy Xz @ yz

XYz

ETKF 2.9 1.67 7.16 101 153 0.78
QoL 198 123 594 082 1.16 0.60
RIP 1.57 097 381 056 0.66 0.40

0.68
0.47
0.35

*With fewer observations (constraint), the model

trajectory is strongly affected by the nonlinear
evolution of the initial errors.

*RIP and QOL use the observations more efficiently

for the under-observed cases.
*Performance: RIP > QOL > standard ETKF



Comparisons between iterative EnKFs

1. RIP/QOL

2. Ensemble Randomized Maximum Likelihood
(EnRML, Gu and Oliver, 2007)

— Same framework as the 4D-Var: Improve only the
sensitivity matrix, Hx, and the background
trajectory for computing the innovation, y_-H(x,)

— Minimize the cost-function with the reduced
adjustment Gauss-Newton method



Ensemble Randomized Maximum Likelihood
Implement MLH with the stochastic EnKF

(1) Minimizing the cost-function is solved for the ensemble member (%),
with perturbed observations at tn

sty = 2 [ = sk Pt xS [ i TR [ w4
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(2) estimate the data mismatch for both x,""and x," with OMF,

OMF, - %[H(M x¢'D -yl | R[HMIxED -y, ]

(3) if OMF,, ;< OMF, x;""' = x;"and increase B,
otherwise keep x,' and decrease B,

(4) If the criteria is not satisfied, repeat (1) to (3). Criteria to stop the iteration:

 Maximum iteration number is 20



RMS error with iterative EnKFs (K=24)

(EnRML doesn’t work with 3 ensemble member, while
RIP and QOL already reach optimal value at K=3)

EnRML
QOL RI P W/O adjusting the
minimizing step
RMS error 0.49 0.33 0.41 1.45

*Experiment with EnRML is performed with an assimilation
window of 25 time-step with observations arranged at the end of

the window

*With infrequent observation, RIP performs better than EnRML.




*The minimization of EnRML can
still fail with strong nonlinearity
*RIP/QOL follow the true trajectory _ o

better

*However, when EnRML is well

behaved, it is slightly more

ETKF
Fmp 1

————EnRML

990 1000

1010

1030

Analysis cycle 1040 1050
accurate than RIP/QOL. e
| | | =_ I_ - _II | |
al ETKF I : _
——QOL |
——RIP | l
.~ 6 ——EnRML | -
S | ,
® |
n 4+ I _
= |
o l
' . |
o ‘ I M,r.f.‘.l | |
) ’ | [} ’ "
i I, !‘\)J {\“'\.v'l‘ - |~'.‘]' Ly l \ ad -"-."' k: '\ N\ \)‘ J L & ‘-v l Lf -N.k | ' " s Al
800 850 900 950 4000 . . 1050 1100 1150 1200

Analysis cycle



Application of LETKF-RIP to
typhoon assimilation/prediction

OSSE experiment setup:

» Regional Model: Weather Research and Forecasting model (WRF, 25km)
» Assimilation scheme: LETKF and LETKF-RIP with 36 ensemble members
« Observations: radiosonde, dropsondes and surface ocean wind

LETKF-RIP setup

1) Computed the LETKF weights at analysis time (00,06,12,182)

2) Use these weight to reconstruct the ensemble (U, V) at (03,09,15,212)
3) perform the 3-hr ensemble forecasts

4) Re-do the LETKF analysis (only one iteration is tested)

time




Typhoon
vertical structure
(analysis)

(c) RMS error in vertical
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Typhoon prediction:
represent the environmental condition
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LETKF-RIP is able to accelerate the
adjustment of the environmental
condition for typhoon development:

*When initialized with the LETKF-RIP
analysis, the improvements include:

1. Capture the west-ward turning
direction the typhoon track.

2. Capture the slow typhoon
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Typhoon prediction:
typhoon intensity

6—HR Forecast 24—HR Forecast
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*The typhoon intensity can be also spun-up by the LETKF-RIP
*The advantage is still valid for the 24-hour forecast



An application of LETKF-RIP to ocean data assimilation

*Data Assimilation of the

Global Ocean using
4D-LETKF and MOM2
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rusp (ps) - Steve Penny’s thesis (2011)
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Summary

* Asin the variational methods, an outer-loop with LETKF
(EnKF) allows to improve the nonlinear evolution of the
background trajectory and better fit the observations.

— Both the RIP and QOL methods are able to improve the nonlinearity of
the model trajectory, so less non-Gaussian distribution occurs.

e Despite violating the Kalman Filter rule that observations
should be used only once, the QOL and RIP methods are
clearly very successful to use observation more than once.

— Multi-step analysis correction with small ensemble spread

 The RIP analysis is actually more accurate than the EnRML
analysis, a iterative EnKF based on Gauss-Newton
minimization.



Running in place (Kalnay and Yang, 2011)

* During the spin-up, we propose to use the observations
repeatedly “ONLY IF” we could extract extra information.
But we should avoid overfitting the observations.

* With RIP, we improve both the accuracy of the mean state
and the flow-dependent error structures.

* Elements for RIP
— No-cost smoother (vs. adjoint model in 4D-Var)

— An appropriate scheme to avoid over-fitting

38



RIP-LETKF with the QG model
(Kalnay and Yang, 2010)

Analysis error of potentlal vorticity of a QG model
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RIP-LETKF with the QG model

Analysis error of potential vorticity of a QG model
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*LETKF spin-up from random perturbations: 141 cycles. With RIP: 46 cycles
*LETKF spin-up from 3D-Var perts 54 cycles. With RIP: 37 cycles

*4D-Var spin-up using 3D-Var prior: 54 cycles
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